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Abstract—This paper proposes a formal technique to verify
whether or not an expected interaction is adaptable. We first
present our observation that a mediated service interaction is
synchronizable. This fact is a prerequisite of our approach.
Hereafter, we formally model a protocol scenario (i.e., a part
of a service protocol to be enacted in an expected interaction)
and an adapter, generate an adaptation logic, and formalize
a mediated service interaction and its conversation. These
formalization enables one to perform a formal verification that
checks whether or not, as well as under which condition, an
expected interaction is achievable. The technique presented in
this paper complements the efforts of adapter synthesization
for ensuring the achievability of a certain expected interaction.

I. INTRODUCTION

Given the inherent autonomy, heterogeneity, and continu-
ous evolution of Web services, mediated service interactions
are a common style of service interactions [1]. Nowadays,
standards such as BPEL and WS-CDL lay out the foundation
that industry can build upon. Research efforts relating ser-
vice interactions either analyze service compositions [2], [3]
that target direct service interactions, or synthesize adapters
[1], [4], [5] that facilitate mediated service interactions
through identifying and reconciling mismatches. Generally,
these techniques support service interactions from a global
behavioral perspective without considering the client’s ex-
pectations. Concretely, for service protocols of a client and
a provider, it is common that they can form many possible
(direct or mediated) service interactions. However, according
to the client’s requirement, just a few (in percentage) are
interesting whereas the others are somehow not relevant.
For instance in the motivating example, assume that only
the interaction leading Toy Items to be delivered is expected.
Then the selecting criterion for a suitable service provider
is the support of these expected interactions, whereas the
other interactions are complementary but not mandatory. To
support this selection criterion, in this paper, we propose a
formal technique that verifies whether or not, and provides
conditions that determine when, the expected interactions
can be properly mediated [6].

As reviewed in [6], previous efforts have been conducted
for synthesizing adapters. However, synthesizing an adapter
does not provide the level of evaluation we target. Gen-
erally, the existence of an adapter indicates that there are
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some interactions possible for service protocols of a client
and a provider, but, an adapter itself does not inform the
client about whether an expected interaction is supportable,
although this knowledge may be derived through simulating
the message exchange by means of the adapter. In addition,
an adapter does not prescribe the condition that determine
when an interaction is possible. Hence, even if an expected
interaction is achievable from message exchange perspec-
tive, it may fail because of unsatisfiability of some conditions
according to exchanged message instances.

A. Motivating Example

Figure 1 depicts three service protocols including two
toy shop services (denoted 7'S; and T'S3) and one toy
requestor service (denoted REQ). Rec., Rep., and Inv. means
receive, reply, and invoke respectively. Switch and transition
conditions (denoted Cd; (i € [1,9])) are associated to
links. Switch conditions refer to the conditions specified on
conditional branches in Switch blocks.

The difference between T'S; and T'S, is that, T'S; may
apply a discount on the price depending on Cust. Info., and
hence, Cust. Info. is expected before the price is decided.
However, Normal Price always applies by default. On the
other hand, T'Sy can provide a price only if the client
is confirmed to be an adult. In addition, some conditions
specified on the links of T'S; and T'S; (such as Cd; in T'S;
and Cdg in T'S>) are different.

Without the loss of generality, we assume that a client,
using REQ, chooses from T'S; or T'S, to interact with for
buying some toys online as a gift for her kid. The expected
result is Toy Items being delivered.

We first explore the support of the expected interaction
between T'S; and REQ. Due to privacy concerns, REQ
sends Cust. Info. only if she is convinced by the price and
is committed to buy. Consequently, a deadlock occurs that
TS, is requesting Cust. Info. before sending the Price, while
REQ is expecting the Price before deciding upon continua-
tion and sending Cust. Info. or not. Such (kind of) deadlock
is reconcilable according to the adaptation mechanisms of
[4] (through providing missing Cust. Info. using evidences)
and [5] (through generating mock-up Cust. Info. message),
but is beyond the capacity of other adapters [1], [7] since
they consider any deadlock as an unreconcilable mismatch.
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Figure 1.  Service protocols for two toy shop services (i.e., T'S1 and
TS2) and one toy requestor service (i.e., REQ). A client, using REQ,
can choose from T'S; or T'Ss to interact with for buying some toys online

We thereafter explore the support of the expected interac-
tion between T'S; and RE(Q. As discussed in the paragraph
above, [4] can support it through providing missing Cust.
Info. using evidences, although this Cust. Info. may not
be consistent with the interaction context since it may be
different from what is provided by REQ afterwards (through
Inv. Cust. Info. activity). On the other hand, the deadlock is
unresolvable according to [5] since the condition Cdg cannot
be enabled using a mock-up Cust. Info. message.

From the reasoning above, the client got to know that
TS, supports the expected interaction using an adapter of
[4], [5], but T'Sy supports it using an adapter of [4] only.

Naturally, the client is also interesting in whether she
can cancel the interaction in case the price is unacceptable.
According to the reasoning above, through an adapter of [4],
[5], both T'S; and T'S5 can support this expected interaction
that leads both T'S; (or T'S3) and REQ to their cancellation.

Consequently, the client is informed that T°.S; and T'S; are
both suitable candidate service providers if an adapter is used
according to [4], while T'S; is more suitable if an adapter is
used according to [5]. However, an adapter such as [4], [5]
can specify whether or not an interaction is possible, but it
cannot indicate whether a specific (maybe also an expected)
interaction is supportable.

The discussion above explores possible message ex-
changes between service protocols. However, the success
of an adaptation in particular and an interaction in general
depends on conditions that decide which branches to follow
in Switch blocks and guard transitions between activities. For
instance, T'S; and RE(Q are adaptable such that Toy Items
can be delivered. A prerequisite is that the condition Cds A
Cds A\ Cds A\ Cds is satisfiable, such that Cdy, Cds and
Cdg lead T'S; and REQ to choose the desired branches,
while Cds ensures meeting specific business requirements.
Identifying these conditions is beyond the existing capability
of adapter synthesization techniques.
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B. Overview of Our Approach

1) Context: Studying service interactions formally is an
active research area and several methods like [2], [3] have
been proposed. [2] proposes an inspiring method to study
interacting BPEL processes, which identifies sufficient con-
ditions that determine when the conversation set for bottom-
up specified service compositions remains the same for
synchronous and asynchronous communication semantics.
In this paper we use the technique proposed in [2] to perform
our verification, thanks to our observation that a mediated
service interaction is synchronizable. Another major concern
is that we can reuse the tool developed in [2].

We conduct the verification in accordance to our Space-
based Process Mediator (SPM) which is detailed in [5]. Note
that the technique proposed in this paper is general and can
be applied to other adapters as well.

2) Approach: We first present our observation in Section
IIT that a mediated service interaction is synchronizable.
Hereafter in Section IV, we formalize a protocol scenario
and an adapter protocol in terms of Guard Finite State
Automata (GFSA) [2]. Note that BPEL is not suitable as
a service protocol modeling method in formal approaches.
GFSA is a finite state automata with guards specified on
transitions [2], where guards corresponds to conditions in
BPEL specification, and hence, we use the notions of
guard and condition interchangeably afterwards. A protocol
scenario is a part of a service protocol, which can be enacted
in a particular (maybe expected) interaction depending on
the evaluation of conditions in Switch branches. We study
mediated service interactions at a protocol scenario level
since a protocol scenario can represent the part of a service
protocol involving in an expected interaction. In addition,
the conjunction of transition guards in these interacting pro-
tocol scenarios constitutes a condition that determines when
these service protocols can properly perform the expected
interaction (possibly through adaptation).

Then, an adaptation logic in respect to interacting pro-
tocol scenarios is generated. An adaptation logic is closely
coupled with the specific protocol scenarios, albeit the adap-
tation mechanism of an adapter (like the SPM) is general.

Consequently, we formalize mediated service interactions
and their conversations, and represent relevant properties in
terms of LTL formulae (in Section V), which can be verified
through Web Service Analysis Tool (WSAT) [2]. The reason
of reusing existing WSAT is that, WSAT is mature for
analyzing service compositions with synchronous semantics.
In addition, a translation from BPEL to GFSA and then to
Promela (the input language of SPIN generated by WSAT)
can be reused which is not a trivial task.

II. PRELIMINARIES
A. Control and Data Dependencies

A service protocol specifies sequencing constraints be-
tween a finite set of semantic activities [8] using Sequence,



Switch, Flow, and Loop control structures. An activity sends
or receives a message that contains business data. An activity
is semantically described by specifying its input, output,
precondition, and effect (so-called IOPE, and refer to OWL-
S specification for details). The input and output define
consumed and produced messages respectively. The precon-
dition and effect represent the respective state of the world
before and after the execution of an activity. For instance,
as proposed in BPEL4SWS, one can describe the activity
implementation using semantic Web services (i.e., OWL-S
or WSMO), and can apply BPELY9%* [9] to support the
execution of BPEL4SWS processes. A service protocol may
specify conditions that guard transitions between activities.
These conditions refer to transition guards in GFSA.
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Figure 2. Control and data dependency graphs for T'S; service protocol

As discussed in [10], different kinds of dependencies
exist between activities, which are often obfuscated by
a service protocol specification that defines all possible
activity execution sequencing. A sequencing constraint in
a service protocol may result from one or multiple kinds of
dependency [10]. In our approach, we consider two kinds,
namely control and data dependencies. Generally,

« An activity act, is control dependent on another activity
act, if the completion of act, (marked by its effect)
is a necessary condition for the enablement of acty
(guarded by its precondition).

« Data dependencies are classified as mandatory or op-
tional. actp is mandatorily data dependent on act, if
common data exist between the output of act, and the
input of actp, while acty is optionally data dependent
on act, if no common data exist between the output of
act, and the input of actp, but incoming conditions of
acty use the data in the output of act,.

[10] claims that different kinds of dependencies between
activities can be extracted from design documents. In our
approach, we extract control and data dependencies from
the semantic description of activities [8]. As illustrated in
Figure 2, we distinguish between control and data depen-
dency graphs of a service protocol that specify a finite set
of asymmetric, irreflexive and transitive relations between
activities. Dependency relations between activities are used
in constructing an adaptation logic (see Section IV-C).

B. WSAT: Web Service Analysis Tool

WSAT (http://www.cs.ucsb.edu/~su/WSAT/) is a formal
specification, verification and analysis tool for analyzing
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Web service compositions that tackles the following chal-
lenges: (1) automata with XPath guards (GFSA) is used
as the intermediate representation of BPEL processes, (2)
synchronizability and realizability analyses, and (3) handling
XML data manipulation.

We next present sufficient conditions of synchronizability
analysis in brief since a mediated service interaction fol-
lows a bottom-up manner. A GFSA service composition is
synchronizable if it is (1) synchronous compatible and (2)
autonomous. A synchronous compatible condition requires
that each sent message should be received by the peer(s)
immediately or reachable through e-transitions (¢ means a
local transition). An autonomous condition requires that each
peer, at any moment, can either terminate or send/receive
a message. An autonomous condition can be relaxed for a
Flow block as a single-entry single-exit permutation block.
More details about the synchronizability analysis and WSAT
can be found in Fu’s Ph.D. thesis [2].

III. MEDIATED SERVICE INTERACTIONS

A mediated service interaction follows a centralized ar-
chitecture where an adapter acts as a centric arbiter to
collaborate with interacting service protocols [1]. Generally,
the adapter intercepts all messages sent by service protocols,
stores or transforms these messages or even generates new
messages (such as the acknowledgement (i.e., ACK) [4], [5],
or new messages using evidences [4], or mock-up messages
[5]), and thereafter, sends a message to a service protocol
when this protocol is ready to receive this message.

In the following sections, we first justify our observation
that a mediated service interaction is synchronizable, and we
then analyze the computation complexity of our technique
which shows that our technique is applicable to service
protocols of practical relevance.

A. Synchronizability of Mediated Service Interactions

In this section, we present Theorem 1 which prove our
observation that a mediated service interaction is synchro-
nizable. This fact is important to our approach because,
for a bottom-up specified service composition like a me-
diated service interaction, if it is not synchronizable, the
asynchronous communication and unbounded input queues
may cause the undecidability of LTL verification [2]. Hence,
Theorem 1 is indeed a prerequisite for our formal verification
of a mediated service interaction.

Theorem 1. A mediated service interaction is synchroniz-
able according to the sufficient conditions proposed in [2].

Proof. A mediated service interaction can be regarded as a
service composition which is composed of multiple service
protocols and a centric adapter. We prove that such a service
composition satisfies sufficient conditions of synchronizabil-
ity analysis [2]:



(1) Synchronous compatible condition. In a mediated
service interaction, each service protocol sends its messages
to the adapter, rather than to peer protocols directly. After-
wards, the adapter forwards these messages to the desired
peer protocols whenever they are ready to receive them. This
message exchange mechanism indicates that the synchronous
compatible condition is satisfiable since (1) any message,
which is to be sent by any service protocol, is ready to
be received by the adapter immediately or reachable via e-
transitions, and (2) the same situation holds for any message
that is to be sent by the adapter to a service protocol.

(2) Autonomous condition. Here, a relaxed autonomous
condition is taken into account. After abstracting any Flow
block into a single-entry single-exit permutation block,

1) any service protocol satisfies relaxed autonomous con-
dition since, at any moment, it either (1) sends a
message to the adapter, or (2) receives a message
from the adapter, or (3) executes e-transitions for
performing its local (also known as internal) logic.
Note that activities in Switch blocks do not violate this
conclusion, since only one branch can be enabled in
a certain interaction.

2) the adapter satisfies relaxed autonomous condition
since, at any moment, it either (1) receives a message
from a service protocol, or (2) sends a message (either
a message produced by a service protocol, or a new
message generated by the adapter itself) to a service
protocol, or (3) executes e-transitions for performing
its local (also known as internal) logic.

Hence, a relaxed autonomous condition is satisfiable.

The reasoning above indicates that any mediated service
interaction satisfies sufficient conditions of synchronizability
analysis, and hence, we conclude that a mediated service
interaction is synchronizable.

Note that there exist some interactions which can be
properly mediated and are synchronizable, but they may
not bring any practical effort. This kind of interactions are
outside the scope of this paper. For instance, considering two
service protocols that send messages only, these two service
protocols are adaptable according to [1], [4], [5], [11], and
the interaction between them is synchronizable according to
Theorem 1. However, this interaction does not bring any
value-added effect of practical relevance.

In this paper, we study mediated service interactions at
a protocol scenario level. A protocol scenario is indeed a
smaller service protocol in size. A definition and examples
for the protocol scenario are presented in Section IV. Hence,
Theorem 1 holds for our approach.

B. Computational Complexity Analysis

In this section, we explore the computation complexity
of our approach. For service protocols of a client and a
provider, we conduct the verification of all combinatorial
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protocol scenarios that are interesting to the client. A service
protocol is observed by [12] to be a fairly simple model
because a service protocol, as well as a service in general, is
designed by humans. This means that the number of protocol
scenarios in a service protocol is typically not large. In
addition, there are only a few (in percentage) interactions
of all combinatorial interactions that are interesting to the
client. For instance for T'S; and REQ), there are 4 X 2 = 8
combinatorial interactions since 7'S; has four protocol sce-
narios and RE(Q) also has two. However, there are only four
interactions interesting to the client which lead 7'S; and
REQ to either (1) Toy Items to be delivered, or (2) both
TS and REQ to their cancellation.

To support the discussion of computation complexity
above, we have conducted a survey about the size of BPEL
service protocols of practical relevance and the number of
protocol scenarios in these service protocols, which are
presented in Table I. The column “Source” shows where
the samples come from and “BPEL Process” shows the
name of the sample processes. The columns “#activity” and
“#proSce” represent the number of activities, and protocol
scenarios, in these sample BPEL protocols, respectively.

Sample Set

Source BPEL Process #activity | #proSce
[1] eBay service 6 1
TPC service 4 1
SUPER Fulfilment 12 4
project OrderFulfillment 16 2
ContentProvision 5 1
active loanApprovalProcess 5 1
endpoints marketplace 6 2
OMII conditionalworkflow 8 3
BPEL echoworkflow 3 1
Oracle BPELProcess1 3 1
SOA DHLShipment 1 1
DEMO SelectManufacturer 3 1

SOAOrderBooking 39/15 16/2

Table I
SAMPLE BPEL SERVICE PROTOCOLS OF PRACTICAL RELEVANCE FOR
SHOWING THE NUMBER OF ACTIVITIES AND PROTOCOL SCENARIOS IN
THESE SERVICE PROTOCOLS

Besides SOAOrderBooking, other samples are small in the
number of both activities and protocol scenarios. We have
taken a close look at SOAOrderBooking. Within these thirty-
nine activities, two are empty activities and another twenty-
two are assign activities. Since empty and assign activities
represent the internal logic, and hence, there are only fif-
teen activities relating to the interaction with the partner.
Because of the embedded Switch blocks, SOAOrderBooking
has sixteen protocol scenarios. However, most branches of
these Switch blocks specify different internal logic (through
empty or assign activity). Hence, several protocol scenarios
are the same to the partner although they are different in



their internal processing logic. The context of this paper is
the interaction within service protocols, and the difference
of internal logic is outside of our interest. Hence, there are
only two protocol scenarios which are different considering
the possible interaction with a partner service protocol.

Besides, Figure 7 in [13] presents twelve realistic pro-
tocols which are used by Fu et al for examining the
applicability of synchronizability and realizability analyses.
They are consistent with our survey that a service protocol
is normally not big in size (i.e., the protocol biggest in size
has only twelve states and fifteen transitions).

The survey above is aligned with claims made in [14], [15]
about the size of service protocols of practical relevance.
Consequently, we can conclude that the technique presented
in this paper is computationally not complex with regard to
service protocols of practical relevance.

IV. MODELING MEDIATED SERVICE INTERACTIONS

We first formalize a protocol scenario and an adapter using
GFSA and generate an adaptation logic. Thereafter, we for-
malize mediated service interactions and their conversations
that are ready for the formal verification purpose.

We formalize the protocol scenario and the adapter using
GFSA which are suitable for formal verification purposes.
On the other hand, their examples are represented in BPEL
processes. Two major reasons support this choice. First,
compared with BPEL, GFSA is relatively complex and it
is not easy to capture concurrent structures. Moreover, the
input format of the WSAT is a BPEL specification, which
is automatically translated into a GFSA by the WSAT.

A. Modeling a Protocol Scenario

Definition 1 (Protocol Scenario). A protocol scenario is a
tuple sce = (M, %, S, s, f, ). M = M™ U M°“ is a finite
set of message classes where M™ is for incoming and M°*
is for outgoing message classes. ¥ is a finite set of messages
in respect to M. S is a finite set of states where s is the
initial state and f is the final state. A protocol scenario has
one finite state. 0 is a finite set of transitions. A transition
T € & can be one of the following three types:

1) a send transition (s1, (o, (g | true)), s3) where sy,
Sso € S such that, s, is the source state and s is
the destination state. oo € M°“, and g is a transition
guard that determines whether this transition can be
enabled according to exchanged message instances
[2]. If no guard is specified, the guard of default is
true. A send transition sends o to an adapter.

2) a receive transition (sy, (75, (g | true)), s2). B € M*™.
A receive transition blocks to wait (3 from an adapter.

3) a local transition (s1, (€, true), s2) to realize the local
(also known as internal) logic.

A transition evolves the state of sce from s to s.

! and ? denote send and receive actions respectively.
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A state of a protocol scenario is a unique configuration of
its properties including exchanged message instances, states
of transition guards, and states of transitions.

A transition guard can be one of the following three states:
fulfilled, violated, or undefined. It starts at undefined, and
evolves to fulfilled or violated relying on the evaluation of
message instances. A transition is in one of the following
four states: initial, enabled, completed, or failed. It starts
at initial, becomes enabled if related transition guards are
fulfilled and all immediately preceding transitions are in
state completed, and moves into completed if it is executed
successfully or into failed otherwise.

~(Toy Shop (One) Scenario >,

-(Toy Requestor Scenario

Rec. Cust. Info.

Cdy: not Cd,

Rep. Normal Price

Cdj;: Payment is received

Rec. Payment

Cds: (golden customer) OR
(not a golden customer AND
delivery is national)

Inv. Delive

scers;: a protocol scenario of TS1 scegrgq: a protocol scenario of REQ

Figure 3. Protocol scenarios for T'S; and REQ service protocols

The generation of protocol scenarios for a service protocol
is intuitive. Generally, a protocol scenario is inherited from
the service protocol, while keeping only one exclusive
branch for each Switch block. Figure 3 illustrates two
protocol scenarios in terms of BPEL processes, denoted
scersi and scergq, for T'S; and RE(Q) respectively. scers:
and scegpg can lead T'S; and REQ to their expected
interaction: Toy Items to be delivered. T'S; has four protocol
scenarios, and RE(Q has two.

The control and data dependency graphs of a protocol
scenario are directly extracted from those of the service
protocol through keeping these dependency relations whose
source and destination activities are both in this protocol
scenario. This step is straightforward, and thus, we do not
give an example to show it.

B. Modeling an Adapter

Definition 2 (Adapter). An adapter is a tuple adt = (M, %,
S,s, f,0). M,%, S, s, f are the same as those in Definition
1. b is a finite set of transitions, where a transition T €
can be one of the following three types:

1) a receive transition (s1, (70, true), s3). f € M™.
The guard is true by default, which indicates that an
adapter receives all messages produced by protocol
scenarios without conditions.

2) a send tramsition (s1, (o, g), s2). a € M, An
adapter sends « to a protocol scenario in case of:



Case 1: an adapter sends a message o, which is
produced by a protocol scenario, to a peer protocol
scenario if this peer protocol scenario may consume
a. The transition guard g refers to the function isln-
terest() ! that identifies if there exists a transition in a
certain protocol scenario, with a state initial, enabled,
or completed, that receives o.
Case 2: an adapter generates an ACK and sends
this ACK to a protocol scenario. This happens when
a deadlock encounters such that, all protocol sce-
narios expect messages, but some protocol scenarios
expect ACK. The transition guard g is the function
expACK4ReceivedMsg() which identifies if one of the
currently enabled transitions is expecting an ACK.
Case 3: an adapter generates a mock-up message
and sends it to a protocol scenario. This happens
when a deadlock encounters such that, all protocol
scenarios expect messages, but no protocol scenario
expects an ACK. The transition guard g is the func-
tion chkOptionalDataDependent() which identifies if
a certain protocol scenario is expecting a message,
and this message is optional to one of the immediately
succeeding transitions.

3) a local transition (s1, (€, true), sz) which generates
an ACK or a mock-up message or performs the local
(also known as internal) logic.

A transition evolves the state of adt from sy to ss.

(Adaptation Logic for scers; and scegpq

Start Flow
I

G T
(Rep. Toy Items )<— Cd;: isk

i R
(Start Switch)
Cd,: true - Cds: chkControlDataDependent()
y S Sl A B,
@EJ’E (Assign a moch-) /@PTP rice )
~ 1 lup Cust. Info. )

Cdy: isInterest() v

Start Flow

i e

/@ﬂm®
R, D

' (Start Switch )~

Cds: expACK4 — Cdg: true

(Rev. Normal Price

| Cdy: isInterest() ReceivedM: v
g G eceivedMsg() ¥
Y | v (Empty)
(Inv. Payment (Assign an ACK) |
(End Switch )
RERNS 2
BepiACK) v
. Cdg: true /T_;:,@j%cujlilnm

b, Sl _
@C,CLDQJ@*/\

Cdy: i

A Delivery

T
End Flow

Figure 4. The adaptation logic for two protocol scenarios scers; and
scergq according to the adaptation mechanisms of SPM

INote that for space consideration, we do not present the functions
isInterest() and chkOptionalDataDependent() in this paper, whereas they are
detailed in our technical report [16]. The function expACK4ReceivedMsg()
is intuitive and hence is not detailed in this paper.
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An example adaptation logic for scers; and scergq is
depicted in Figure 4 (in terms of a BPEL process).

Conditions in BPEL processes are encoded through XPath
expressions. The function expACK4ReceivedMsg() can be
expressed using XPath. However, another two functions
isInterest() and chkControlDataDependent() cannot since
isInterest() relies on the state of protocol scenarios, and
chkControlDataDependent() depends on control and data
dependency relations. They are only the placeholders in a
BPEL process (or a GFSA) for an adapter specification, and
are not to be checked at a static verification phase.

On the other hand, the functions isInterest() and chk-
ControlDataDependent() have been taken into consideration
when the adaptation logic is generated (for details we refer
to the next section). Hence, the fact that these two functions
are not to be checked at a static verification phase does not
impact the verification result.

The state of an adapter is defined similarly to that of a
protocol scenario.

C. Generating an Adaptation Logic

The SPM ? is general since its adaptation mechanism
is independent of any specific interaction. However, an
adaptation logic is specific which is coupled with interacting
protocol scenarios. The function genAdaptationLogic() pre-
sented in Algorithm 1 generates such an adaptation logic,
where protocol scenarios are encoded in BPEL processes.

Note that we use BPEL processes as input in Algorithm
1, instead of GFSAs, since activity sequencing is simple
and clear in BPEL processes through control structures,
but is relatively complex and vague in GFSAs [2]. This
facilitates the generation of an adaptation logic. In addition,
the generated adaptation logic encoded in a BPEL process
can be automatically translated into a GFSA by WSAT.

The procedure for generating the adaptation logic is
detailed in Algorithm 1. Generally, an adaptation logic is
composed of a Flow block. A concurrent branch is a revised
protocol scenario (see an example in Figure 4 for two
protocol scenarios scersi and scerpg). We next explain
how a branch is derived from a protocol scenario.

First, the polarity of activities in a protocol scenario
(denoted sce;) is reversed (line 5). The modified protocol
scenario (denoted sce?®) is integrated into the adaptation
logic as a concurrent branch (line 6). Conditions in sce; are
not passed to sce?%t since they do not need to be re-checked
in the adaptation logic.

Receive activities in the adaptation logic are not to be
further proceeded since they are to receive messages sent

2Note that this procedure for generating the adaptation logic is necessary
for the SPM because the adaptation mechanisms of the SPM are general,
and hence, an adapter is not needed to be generated at the design time. On
the other hand, for other adaptation techniques such as [1], [4], [7], they
need to construct a concrete adapter at the design time. Consequently, this
adaptation logic generation may not be necessary for them.



Algorithm 1 GENADAPTATIONLOGIC({sce})

In: {sce} is a set of protocol scenarios encoded in BPEL processes. Without the loss of generality, we model sce as a structured workflow
Out: adt is an adaptation logic with respect to {sce} encoded in a BPEL process

1: adt «— initialize adt by adding a Flow block flow,q; with an empty Flow body (i.e., no branches)

2: n «— |{sce}| to get the number of protocol scenarios that are numbered from 1 to n

3: Ty «— generate a set of tuples through the function isInterest(), and each tuple is expressed in terms of (msg, i, j) which specifies that a
message msg is to be produced by sce; and is to be consumed by sce;. Without the loss of generality, we assume that any msg is to be produced
by only one protocol scenario, but may be consumed by multiple protocol scenarios

4: fori=1tondo

S: sce?‘“ «—— reverse the polarity of activities in sce;, i.e., change the send to the receive and vice versa
6: flowg gy «— insert scegdt as a concurrent branch

7: end for

8: fori=1tondo

9: foreach a send activity act in sce;.‘d‘ that sends a message msg do

10: nd «—— a node in scegdt such that there is an arc in sce;‘dt which leads nd to act. Note that since we model sce; as a structured
workflow, there is only one node in sce;‘dt that links to act

11: if msg is an ACK then

12: actqgn <— generate an Assign activity for producing such an ACK

13: actempty <—— generate an Empty activity

14: switch «— generate a Switch block, and make actqgn as one branch with a condition expACK4ReceivedMsg(), and make actempty

as another branch with a condition true. The actempty branch acts as the default (i.e., <else>) branch of switch

15: scegdt «—— remove the arc in sce‘i‘dt for nd to act, and insert switch between nd and act

16: continue

17: end if

18: actj, < get the receive activity in scezdt that receives msg, i.e., a tuple (msg, k, ) exists in Ts. Without the loss of generality, we
assume that only one activity (like acty) in a protocol scenario (like scey) is to receive a certain message (like msg)

19: if nd is not null and there exists a send or receive activity actyo; in scegdt such that, act s,; immediately follows act (i.e., there is an
arc in scegdt leading from act to act 1), and acty,y is neither control nor mandatorily data dependent on act (based on the dependency
relations between the activities of sce; specified by its control and data dependency graphs) then

20: actagn <— generate an Assign activity for producing a mock-up msg

21: if acty is null then

22: sce?t «—— remove the arc in sce¢?t for nd to act, add an arc for nd to actegn, and add a link to specify a control

dependency relation for actagn to act, and set chkControl DataDependent() as the transition condition on this link

23: else

24: actempty < generate an Empty activity

25: switch «— generate a Switch block, and make actqgn as one branch with a condition chkControlDataDependent(), and

make actempty as another branch with a condition true. The actempty branch acts as the default (i.e., <else>) branch of
switch

26: scegd‘ «—— remove the arc in sce?‘“ for nd to act, and insert switch between nd and act

27: if k£ # ¢ then

28: foreach an activity acty,qp in scegdt that is mandatorily data dependent on act do

29: soez‘“, sce;.‘dt +— generate a link to specify a control dependency relation for acty to acty,q4p, and set true

as the transition condition on this link

30: end for

31 end if

32: end if

33: continue

34: end if

35: if acty, is not null and k # ¢ then

36: scezd‘, scegdt «—— generate a link to specify a control dependency relation for acty to act, and set isInterest() as the transition

condition on this link

37 end if

38: end for

39: end for

by protocol scenarios. Since receive activities in sce? are

tightly coupled with send activities in sce;, a message sent
by sce; is ready to be received by scegdt immediately.

On the other hand, the situation for send activities is
different. Send activities in scef?t are coupled with receive
activities in sce;. This means that a message sent by sce??t
is ready to be received by sce;, but this message exchange
requires that the message to be sent has been received by
the adaptation logic. However, this assumption may not be

satisfiable in some cases. As such, the SPM needs to mediate

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8270
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8270

missing messages or deadlocks. Consequently, line 10-37

handles each send activity act in sce?? as follows:

o If a message to be sent is an ACK for business data that
is to be received previously, an Assign activity actqgn
generates such an ACK (line 11-17).

On the other hand, this ACK may have been received
already, and hence, an Empty activity actempty is used
for representing this situation. actagn, and actempiy
are assembled into a Switch block (denoted switch)
with conditions expACK4ReceivedM sg() and true



respectively. The block switch is integrated into sce??
immediately before act.

« If a message msg to be sent by act is concrete business
data, the activity acty, in a protocol scenario scegdt that
receives msg is identified depending on T (line 18).
Ty is a set of tuples generated through the function
isInterest(), and each tuple is expressed in terms of
(msg, k, i), which specifies that: (1) msg is to be
produced by scer and (2) msg is to be consumed by
sce;. It is possible that msg is produced by sce; (k =
%) or does not exist since no protocol scenario produces
it (no tuple in Ths for msg).

There are two cases for handling act that sends msg
as concrete business data, depending on whether act is
not the first activity in scegdt (guarded by the condition
that nd is not null), and whether there exists a send
or receive activity actfop in scegdt under the condition

that: (1) acty, immediately follows act, and (2) act o

is neither control nor mandatorily data dependent on

act (line 19).

Case 1: If act is not the first activity in sce??* and

act o exists, a mock-up msg is generated by an Assign

activity act,gr for handling the lack of a msg (line 20).

There are two situations for handling this mock-up msg

as follows:

— If a msg is not to be produced by any protocol
scenario (acty is null), act,g, is inserted into
sce?® immediately before act, and a link with a
transition condition chkControlDataDependent() is
generated for actqgy, to act (line 21-22);

— Or acty, exists, which indicates that such a msg
may have been received when act is ready to send
a msg. An Empty activity actempty is used to
represent this situation. actagn, and actempiy are
assembled into a Switch block (denoted switch)
with conditions chkControlDataDependent() and
true respectively. The block switch is integrated
into sce?® immediately before act (line 23-26).

Note that act can be enabled using this mock-up msg,
but any activity (denoted actpgp) in scef‘“ which is
mandatorily data dependent on act cannot be enabled
without msg. If acty, is not in sce‘i’dt, a link is generated
to specify a control dependency relation for acty to
actmdp (line 27-31).

Case 2: Otherwise, if act s, does not exist, no mock-up
msg can be generated. If acty is not in sce‘;dt, a link
with a transition condition islnterest() is generated for
specifying a control dependency relation between acty

and act (line 35-37).

The time complexity of Algorithm 1 is O(n * m?), where
n is the number of protocol scenarios, and m is the maximum
number of send and receive activities in a protocol scenario.
The reason is that the time complexity of handling a Send

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8270
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8270

activity (line 10-37) is O(m), since line 19, as well as line
28-30, needs O(m). Hence in the worst case, there are (n *
m) activities to be handled and the time complexity of each
activity handling is O(m).

D. Mediated Service Interaction and Conversation

After defining a protocol scenario and an adapter and
generating the adaptation logic for interacting protocol sce-
narios, in this section, we formalize the mediated service in-
teraction in Definition 4 leveraging on its schema presented
by Definition 3. Thereafter, the conversation is specified in
Definition 5 based on the notion of a global configuration.
Leveraging on these formalization, we are ready to formally
verify a mediated service interaction.

1) Mediated Service Interaction:

Definition 3 (Mediated Service Interaction Schema). A
mediated service interaction schema is a tuple (P, M, %).
P is a set {scey, ..., scen, adt} where sce; (i € [1,n]) is
a protocol scenario and adt is an adapter.

The alphabet M is a finite set of message classes.

A protocol scenario is sce; = (M, M{“*) such that
Mi™ N M{“t = () (where ) means an empty set), and M;
= M™ U M?¥ is the alphabet of sce;.

An adapter is adt = (Mi, MZ). Mi, =
Useqa,m M7 and Mgt = Mgen U Usey o) Mi™ where

gen IS a finite set of generated ACK or mock-up messages.

For any two protocol scenarios sce; = (M™, M{“*) and
scej = (MJ®, MP™), M 0 MP™ = 0, but M{™ N M
# 0 is allowed. The alphabet M = Mgen U U, ¢y ny(M;™U
M), since Uy Mi™ # Uiy M is allowed.

Y is is a finite set of message with respect to M.

Different from the GFSA composition schema defined in
[2], Definition 3 allows the set of send message classes and
receive message classes not to be the same, and one send
message to be received by multiple peer protocol scenarios.

Definition 4 (Mediated Service Interaction). A mediated
service interaction is a tuple medIl = {(P, M, %), scey, ...,
scen, adt) where (P, M, X)) is the corresponding mediated
service interaction schema. |P| = (n+1). sce; (i € [1, n])
is the implementation of the i*" protocol scenario, and adt
is the adaptation logic of an adapter with respect to these
protocol scenarios scey, ..., SCep.

2) Conversation: We next present the notion of a con-
versation with respect to a certain medl = ((P, M, %),
scei, ..., Scen, adt). A global configuration « of med! is
a (n + 1)-tuple in terms of the form (s', ..., s7, s%¥), &
denotes the state of the it protocol scenario sce;, and s%%
denotes the state of the adapter adt. vo = (53, R sgdt)
is the initial global configuration, where s§ and s3% are the
initial states of sce; and adt respectively. v5 = (s}, cees s}’,
s?dt) is the final global configuration, where sj} and s‘}dt are
the final states of sce; and adt respectively. Note that medl



is synchronizable (see Theorem 1), so that unbounded input

queues for storing incoming messages are unnecessary.

For global configurations y; = (sl, ..., s, s?%) and ~;
= (s;, cees s;?, sgdt), we specify that, -y; derives v; (denoted
i — v;), if one of the following six conditions holds:

1
o Cl: scey, sends a message m, i.e., y; RULN ;> such that:
1) (sk, Im, s;?) € 6%, where 6% is the transition set of
scey, and 2) s34t = sgdt, and VI # k: st = sg.
. . ?

o C2: scey receives a message m, i.e., y; LN v;» such
that: 1) (sF, ?m, s¥) € 6%, and 2) s¢% = 9%, and V¥
l#k: st = 35-

o C3: scer executes a e-transition, i.e., 7; 5 vj» such
that: 1) (sF, €, s¥) € 6%, and 2) 574t = 524, and V [

R |

# ks, =s; '
o C4: adt sends a message m, i.e., y; RULN 7j» such that:

1) (s29, Im, s‘}dt) € §%9t where 629 is the transition

set of adt, and 2) V I: st = sé

. . ™
o C5: adt receives a message m, i.e., v; — 7;, such
that: 1) (s¢%, ?m, s39) € 6°4, and 2) V I: s} = s}
o C6: adt executes a e-transition, i.e., y; N ;> such that:

1) (s34, ¢, sgdt) € 6% and 2) V I: st = sg

Based on the above derivation operations, Definition 5
defines the conversation of a mediated service interaction.

Definition 5 (Conversation). A conversation of a mediated
service interaction is a sequence of global configurations:
Y= — Y1 — - — Yk — f, where yo and v; are the
initial and final global configurations respectively. For any
global configuration v; (i € (0,k]), v; derives y(it1), ie.,
'm|?m|e
Yi —— 7Y(i+1)- Note that (1) corresponds to vs.
Different from the conversation defined in [2] that consid-
ers send sequences only, Definition 5 considers receive and
e-transitions as well. The reason is that the context of [2] is a
direct service interaction, as such, each sent message is to be
received by only one peer service protocol, and e-transitions
have no impact to the interaction. However, in a mediated
service interaction, a sent message is possibly received by
multiple peer protocol scenarios, and new ACK and mock-up
messages are possibly being generated by e-transitions in an
adapter for reconciling deadlocks. These generated messages
are consistent with business requirements.

V. VERIFYING MEDIATED SERVICE INTERACTIONS

This section specifies the properties of the conversations
in terms of LTL Formulae which can be verified through
SPIN. A basic principle of SPIN, as well as model checking
tools in general, is to trace through all relevant states with
respect to a certain property, where the order of these states
indicates all possible execution paths. If the answer is yes,
then the property is satisfied. Otherwise, a counterexample
is given which is helpful for debugging purposes.
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There are two kinds of general properties to be considered
for the verification: reachability and liveness. A reachability
property states the fact that a particular situation can some-
times be reachable, whereas a liveness property prescribes
that a situation can ultimately occur under certain conditions.
Hence, a liveness property formulates a much stronger
condition than a reachability property, since it requires that
a particular situation is always reachable. An example of
liveness is the termination property of a mediated service
interaction as reflected by Formula 1:

G(y0 — Fvy) )

where G and F are temporal operators which mean
globally and eventually respectively.

The satisfaction of Formula 1 means that protocol sce-
narios can be mediated, under the condition that, the con-
junction of all transition guards in protocol scenarios (called
a must-be-held condition in the following) is satisfiable
according to exchanged message instances. A must-be-held
condition includes Switch conditions that lead service proto-
cols to follow these protocol scenarios, and other conditions
that guard transitions in these protocol scenarios.

Indeed, a runtime behavior of a service protocol depends
on the evaluation of its Switch and other conditions, whilst
their evaluation relies on exchanged message instances.
Considering two protocol scenarios scers; and scergq,
suppose that the interaction between scers; and scergq
is an expected interaction to the client, and suppose this in-
teraction satisfies Formula 1 under a must-be-held condition
Cond = Cda \ Cds A\ Cds A\ Cds. Then T'S; and REQ
are adaptable with a prerequisite that exchanged message
instances can lead T'S; and REQ to follow scerg; and
scegrgq (i.e., their Switch conditions in Cond are satisfied),
and they can satisfy other conditions in Cond.

Formula 1 is usually being violated if a mediated service
interaction is modeled at a service protocol level. The reason
is that, service protocols usually can interact in some, but
not all, situations [1]. In order to perform a verification at
a service protocol level, Formula 1 is to be changed to a
reachability property as shown in Formula 2:

F(y" — Fvf?) )

where g is the initial global configuration, and v$” is
one of the final global configurations, of a mediated service
interaction that is modeled at a service protocol level. yg”
and 7} can be specified in a similar manner like o and 7;.

The satisfaction of Formula 2 indicates that service pro-
tocols can be mediated in some cases. However, this result
does not provide much valuable information, since it does
not give an indication on which set of protocol scenarios
in these service protocols can be mediated with which
conditions, as well as which set cannot. Often a service
protocol has multiple protocol scenarios. The satisfiability of



Formula 2 is inadequate to inform the client about whether
or not an expected interaction can possibly succeed.

On the other hand, the satisfiability of Formula 1 in-
dicates whether a particular set of protocol scenarios can
be mediated under a certain must-be-held condition. Given
the verification result for all expected interactions (i.e., for
all expected combinatorial protocol scenarios), the client
is informed about an overall knowledge of expected in-
teractions, i.e., whether or not an expected interaction can
interact properly under which condition. This knowledge is
an important criterion to the client to identify if an expected
service interaction is appropriate, and hence, to select the
most suitable service provider among functionally equivalent
candidates according to her requirements.

VI. RELATED WORK AND CONCLUSION

A significant work is presented in [2], which studies asyn-
chronous BPEL processes interactions following bottom-
up and top-down manners (see Section II-B). Based on
which, our work is conducted, since we observe that a
mediated service interaction is synchronizable. However,
this work conducts a verification at a service protocol level
which usually cannot provide a precise evaluation (i.e., not
client-expected interactions oriented, and not providing the
conditions that determine when the interactions are possible)
as mentioned in Section V. This approach allows performing
synchronizability analysis, which is to verify whether a
synchronous composition may be applied for further analysis
without loosing behaviors. The synchronous communication
model covers only a part of service composition scenarios of
practical relevance [3]. This observation leads the work [3],
which develops a parametric model for describing service
compositions, and captures a hierarchy of communication
models ranging from synchronous communication models to
asynchronous communication models with complex buffer
structures. Consequently, a least general but adequate model
can be built for a certain composition scenario.

Besides, in [17], a service protocol interaction is described
in terms of BPMN, which is then being verified through a
process-algebraic approach. In [18], service protocols are
modeled by means of petri nets, and hence, the proper-
ties such as usability, compatibility, and similarity can be
checked using existing tools.

In summarisation, this paper has two major contributions:

1) We observe that a mediated service interaction is
synchronizable. This characteristic is important, and is
also a fundamental prerequisite of our approach, be-
cause non-synchronizable service compositions cause
the undecidability of LTL verification [2], and

2) Our technique provides a precise evaluation about
expected (instead of all) interactions (i.e., which ex-
pected service interaction is adaptable with which
condition, and which is not).
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The result of our work is an important criterion to the
client for identifying and thus selecting the most suitable
service provider from functionally equivalent candidates
according to her specific business requirements.
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